Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
J Nanobiotechnology ; 22(1): 208, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664789

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can undergo inadequate osteogenesis or excessive adipogenesis as they age due to changes in the bone microenvironment, ultimately resulting in decreased bone density and elevated risk of fractures in senile osteoporosis. This study aims to investigate the effects of osteocyte senescence on the bone microenvironment and its influence on BMSCs during aging. RESULTS: Primary osteocytes were isolated from 2-month-old and 16-month-old mice to obtain young osteocyte-derived extracellular vesicles (YO-EVs) and senescent osteocyte-derived EVs (SO-EVs), respectively. YO-EVs were found to significantly increase alkaline phosphatase activity, mineralization deposition, and the expression of osteogenesis-related genes in BMSCs, while SO-EVs promoted BMSC adipogenesis. Neither YO-EVs nor SO-EVs exerted an effect on the osteoclastogenesis of primary macrophages/monocytes. Our constructed transgenic mice, designed to trace osteocyte-derived EV distribution, revealed abundant osteocyte-derived EVs embedded in the bone matrix. Moreover, mature osteoclasts were found to release osteocyte-derived EVs from bone slices, playing a pivotal role in regulating the functions of the surrounding culture medium. Following intravenous injection into young and elderly mouse models, YO-EVs demonstrated a significant enhancement of bone mass and biomechanical strength compared to SO-EVs. Immunostaining of bone sections revealed that YO-EV treatment augmented the number of osteoblasts on the bone surface, while SO-EV treatment promoted adipocyte formation in the bone marrow. Proteomics analysis of YO-EVs and SO-EVs showed that tropomyosin-1 (TPM1) was enriched in YO-EVs, which increased the matrix stiffness of BMSCs, consequently promoting osteogenesis. Specifically, the siRNA-mediated depletion of Tpm1 eliminated pro-osteogenic activity of YO-EVs both in vitro and in vivo. CONCLUSIONS: Our findings suggested that YO-EVs played a crucial role in maintaining the balance between bone resorption and formation, and their pro-osteogenic activity declining with aging. Therefore, YO-EVs and the delivered TPM1 hold potential as therapeutic targets for senile osteoporosis.


Extracellular Vesicles , Mesenchymal Stem Cells , Osteocytes , Osteogenesis , Tropomyosin , Animals , Male , Mice , Adipogenesis , Cell Differentiation , Cells, Cultured , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice, Inbred C57BL , Mice, Transgenic , Osteoclasts/metabolism , Osteocytes/metabolism , Osteoporosis/metabolism , Tropomyosin/metabolism , Tropomyosin/genetics
2.
Huan Jing Ke Xue ; 44(5): 2492-2501, 2023 May 08.
Article Zh | MEDLINE | ID: mdl-37177924

Ambient air pollution is a dominant determinant of health. The health effects and economic losses due to air pollution are very important for decision-making. Since the implementation of the "Air Pollution Prevention and Control Action Plan" and "blue sky defense war" policies, the air quality of Tianjin has changed significantly. Here, the health effects and economic losses attributable to ambient air pollution in Tianjin from 2013 to 2020 wereestimated. For the particulate matter which has complex components, we assessed the inhalation health risks of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in PM2.5. The variation in the concentration of the main components of PM2.5 was also analyzed. The results showed that improved air quality had positive health benefits. The health benefits from SO2 were the highest among the six air pollutants, and 3786 deaths were avoided in 2020 compared to in 2013 due to lower SO2 concentration. The economic losses caused by air pollutants ranged from several billion to ten billion yuan. Among the six air pollutants, particulate matter and ozone had higher health losses in recent years. The health risks of heavy metals and PAHs in PM2.5 showed a decreasing trend. However, Cr(Ⅵ), As, Cd, and Ni in PM2.5in the winter of 2020 still had respiratorysystem carcinogenic risk, whereas there was no health risk of PAHs in PM2.5in 2019-2020. The concentrations of main components of PM2.5 have decreased significantly. In the future, the reduction of health loss caused by air pollution depends on synergy governance of particulate matter and ozone and further research on health effects.


Air Pollutants , Air Pollution , Metals, Heavy , Ozone , Polycyclic Aromatic Hydrocarbons , Environmental Monitoring/methods , Air Pollution/adverse effects , Air Pollution/prevention & control , Air Pollution/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Metals, Heavy/analysis , Polycyclic Aromatic Hydrocarbons/analysis , China
3.
Huan Jing Ke Xue ; 44(4): 1811-1820, 2023 Apr 08.
Article Zh | MEDLINE | ID: mdl-37040932

Based on the hourly O3 concentration data of 337 prefectural-level divisions and simultaneous surface meteorological data in China, we applied empirical orthogonal function (EOF) analysis to analyze the main spatial patterns, variation trends, and main meteorological driving factors of O3 concentration in China from March to August in 2019-2021. In this study, a KZ (Kolmogorov-Zurbenko) filter was used to decompose the time series of O3 concentration and simultaneous meteorological factors into corresponding short-term, seasonal, and long-term components in 31 provincial capitals.Then, the stepwise regression was used to establish the relationship between O3 and meteorological factors. Ultimately, the long-term component of O3 concentration after "meteorological adjustment" was reconstructed. The results indicated that the first spatial patterns of O3 concentration showed a convergent change, that is, the volatility of O3 concentration was weakened in the high-value region of variability and enhanced in the low-value region.Before and after the meteorological adjustment, the variation trend of O3 concentration in different cities was different to some extent. The adjusted curve was "flatter" in most cities. Among them, Fuzhou, Haikou, Changsha, Taiyuan, Harbin, and Urumqi were greatly affected by emissions. Shijiazhuang, Jinan, and Guangzhou were greatly affected by meteorological conditions. Beijing, Tianjin, Changchun, and Kunming were greatly affected by emissions and meteorological conditions.

4.
Adv Sci (Weinh) ; 9(17): e2105316, 2022 06.
Article En | MEDLINE | ID: mdl-35508803

Both Alzheimer's disease (AD) and osteoporosis (OP) are common age-associated degenerative diseases and are strongly correlated with clinical epidemiology. However, there is a lack of clear pathological relationship between the brain and bone in the current understanding. Here, it is found that young osteocyte, the most abundant cells in bone, secretes extracellular vesicles (OCYYoung -EVs) to ameliorate cognitive impairment and the pathogenesis of AD in APP/PS1 mice and model cells. These benefits of OCYYoung -EVs are diminished in aged osteocyte-derived EVs (OCYAged -EVs). Based on the self-constructed OCY-EVs tracer transgenic mouse models and the in vivo fluorescent imaging system, OCY-EVs have been observed to be transported to the brain under physiological and pathological conditions. In the hippocampal administration of Aß40 induced young AD model mice, the intramedullary injection of Rab27a-shRNA adenovirus inhibits OCYYoung -EVs secretion from bone and aggravates cognitive impairment. Proteomic quantitative analysis reveals that OCYYoung -EVs, compared to OCYAged -EVs, enrich multiple protective factors of AD pathway. The study uncovers the role of OCY-EV as a regulator of brain health, suggesting a novel mechanism in bone-brain communication.


Alzheimer Disease , Extracellular Vesicles , Aging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Extracellular Vesicles/metabolism , Mice , Osteocytes/metabolism , Proteomics
5.
Nat Commun ; 13(1): 1453, 2022 03 18.
Article En | MEDLINE | ID: mdl-35304471

Adipocyte differentiation of bone marrow mesenchymal stem/stromal cells (BMSCs) instead of osteoblast formation contributes to age- and menopause-related marrow adiposity and osteoporosis. Vascular calcification often occurs with osteoporosis, a contradictory association called "calcification paradox". Here we show that extracellular vesicles derived from aged bone matrix (AB-EVs) during bone resorption favor BMSC adipogenesis rather than osteogenesis and augment calcification of vascular smooth muscle cells. Intravenous or intramedullary injection of AB-EVs promotes bone-fat imbalance and exacerbates Vitamin D3 (VD3)-induced vascular calcification in young or old mice. Alendronate (ALE), a bone resorption inhibitor, down-regulates AB-EVs release and attenuates aging- and ovariectomy-induced bone-fat imbalance. In the VD3-treated aged mice, ALE suppresses the ovariectomy-induced aggravation of vascular calcification. MiR-483-5p and miR-2861 are enriched in AB-EVs and essential for the AB-EVs-induced bone-fat imbalance and exacerbation of vascular calcification. Our study uncovers the role of AB-EVs as a messenger for calcification paradox by transferring miR-483-5p and miR-2861.


Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Animals , Bone Matrix , Cell Differentiation , Female , Mice , MicroRNAs/genetics , Osteogenesis
6.
J Acoust Soc Am ; 150(5): 3929, 2021 Nov.
Article En | MEDLINE | ID: mdl-34852603

The boundary element method- (BEM-) based free field recovery technique (FFRT) has been proposed to recover the free field radiated by an arbitrarily shaped source from the mixed field that would be measured in a noisy environment. However, that technique requires that the boundary integral equation should be established on an enclosed hologram surface surrounding the source, which means that the hologram surface should be discretized into elements and the measurement points should be located on the nodes of the elements. For large-scale or mid-high frequency problems, it makes the total number of measurement points huge since it should obey the criterion of more than six elements per wavelength, which put forward very high requirements for holographic data measurement. To overcome this problem, a more flexible BEM-based FFRT without the restriction on the locations of measurement points is proposed in this study. In virtue of this, a three-dimensional scanning measurement method can be applied to acquire holographic data with high efficiency. The effectiveness of the proposed method is validated by two numerical simulations and an experiment.

8.
Adv Sci (Weinh) ; 8(24): e2100808, 2021 12.
Article En | MEDLINE | ID: mdl-34719888

A differentiation switch of bone marrow mesenchymal stem/stromal cells (BMSCs) from osteoblasts to adipocytes contributes to age- and menopause-associated bone loss and marrow adiposity. Here it is found that osteocytes, the most abundant bone cells, promote adipogenesis and inhibit osteogenesis of BMSCs by secreting neuropeptide Y (NPY), whose expression increases with aging and osteoporosis. Deletion of NPY in osteocytes generates a high bone mass phenotype, and attenuates aging- and ovariectomy (OVX)-induced bone-fat imbalance in mice. Osteocyte NPY production is under the control of autonomic nervous system (ANS) and osteocyte NPY deletion blocks the ANS-induced regulation of BMSC fate and bone-fat balance. γ-Oryzanol, a clinically used ANS regulator, significantly increases bone formation and reverses aging- and OVX-induced osteocyte NPY overproduction and marrow adiposity in control mice, but not in mice lacking osteocyte NPY. The study suggests a new mode of neuronal control of bone metabolism through the ANS-induced regulation of osteocyte NPY.


Adipocytes/metabolism , Bone and Bones/metabolism , Neuropeptide Y/metabolism , Osteoblasts/metabolism , Osteoporosis/metabolism , Adipogenesis/physiology , Animals , Bone and Bones/physiopathology , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Osteocytes/metabolism , Osteogenesis/physiology , Osteoporosis/physiopathology
9.
Adv Sci (Weinh) ; 8(9): 2004831, 2021 05.
Article En | MEDLINE | ID: mdl-33977075

Recently, the gut microbiota (GM) has been shown to be a regulator of bone homeostasis and the mechanisms by which GM modulates bone mass are still being investigated. Here, it is found that colonization with GM from children (CGM) but not from the elderly (EGM) prevents decreases in bone mass and bone strength in conventionally raised, ovariectomy (OVX)-induced osteoporotic mice. 16S rRNA gene sequencing reveals that CGM reverses the OVX-induced reduction of Akkermansia muciniphila (Akk). Direct replenishment of Akk is sufficient to correct the OVX-induced imbalanced bone metabolism and protect against osteoporosis. Mechanistic studies show that the secretion of extracellular vesicles (EVs) is required for the CGM- and Akk-induced bone protective effects and these nanovesicles can enter and accumulate into bone tissues to attenuate the OVX-induced osteoporotic phenotypes by augmenting osteogenic activity and inhibiting osteoclast formation. The study identifies that gut bacterium Akk mediates the CGM-induced anti-osteoporotic effects and presents a novel mechanism underlying the exchange of signals between GM and host bone.


Bone Density/physiology , Bone and Bones/metabolism , Extracellular Vesicles/metabolism , Gastrointestinal Microbiome/physiology , Osteoporosis/metabolism , Osteoporosis/physiopathology , Age Factors , Aged , Animals , Child, Preschool , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged
10.
Int J Nanomedicine ; 16: 2949-2963, 2021.
Article En | MEDLINE | ID: mdl-33907401

PURPOSE: Prostate cancer (PCa) is one of the most common malignancies in males. Despite the success of immunotherapy in many malignant cancers, strategies are still needed to improve therapeutic efficacy in PCa. This study aimed to investigate the effects of Akkermansia muciniphila-derived extracellular vesicles (Akk-EVs) on PCa and elucidate the underlying immune-related mechanism. METHODS: Akk-EVs were isolated by ultracentrifugation and intravenously injected to treat syngeneic PCa-bearing immune-competent mice. Immunophenotypic changes in immune cells, such as cytotoxic T lymphocytes and macrophages, were measured via flow cytometry analysis. Histological examination was used to detect morphological changes in major organs after Akk-EVs treatments. In vitro, flow cytometry was performed to confirm the effects of Akk-EVs on the activation of CD8+ T cells. Quantitative PCR and immunofluorescence staining were carried out to test the impact of Akk-EVs on macrophage polarization. Cell counting kit-8 (CCK-8) analysis, colony formation assays, and scratch wound healing assays were conducted to assess the effects of Akk-EVs-treated macrophages on the proliferation and invasion of PCa cells. CCK-8 assays also confirmed the impact of Akk-EVs on the viability of normal cells. RESULTS: Intravenous injection of Akk-EVs in immune-competent mice reduced the tumor burden of PCa without inducing obvious toxicity in normal tissues. This treatment elevated the proportion of granzyme B-positive (GZMB+) and interferon γ-positive (IFN-γ+) lymphocytes in CD8+ T cells and caused macrophage recruitment, with increased tumor-killing M1 macrophages and decreased immunosuppressive M2 macrophages. In vitro, Akk-EVs increased the number of GZMB+CD8+ and IFN-γ+CD8+ T cells and M1-like macrophages. In addition, conditioned medium from Akk-EVs-treated macrophages suppressed the proliferation and invasion of prostate cells. Furthermore, the effective dose of Akk-EVs was well-tolerated in normal cells. CONCLUSION: Our study revealed the promising prospects of Akk-EVs as an efficient and biocompatible immunotherapeutic agent for PCa treatment.


CD8-Positive T-Lymphocytes/drug effects , Extracellular Vesicles/immunology , Macrophages/drug effects , Prostatic Neoplasms/drug therapy , Akkermansia/chemistry , Animals , Antineoplastic Agents, Immunological/chemistry , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Immunophenotyping , Immunotherapy/methods , Interferon-gamma/metabolism , Macrophages/immunology , Male , Mice, Inbred C57BL , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology
11.
Theranostics ; 11(5): 2395-2409, 2021.
Article En | MEDLINE | ID: mdl-33500732

Alzheimer's disease (AD) is currently ranked as the third leading cause of death for eldly people, just behind heart disease and cancer. Autophagy is declined with aging. Our study determined the biphasic changes of miR-331-3p and miR-9-5p associated with AD progression in APPswe/PS1dE9 mouse model and demonstrated inhibiting miR-331-3p and miR-9-5p treatment prevented AD progression by promoting the autophagic clearance of amyloid beta (Aß). Methods: The biphasic changes of microRNAs were obtained from RNA-seq data and verified by qRT-PCR in early-stage (6 months) and late-stage (12 months) APPswe/PS1dE9 mice (hereinafter referred to as AD mice). The AD progression was determined by analyzing Aß levels, neuron numbers (MAP2+) and activated microglia (CD68+IBA1+) in brain tissues using immunohistological and immunofluorescent staining. MRNA and protein levels of autophagic-associated genes (Becn1, Sqstm1, LC3b) were tested to determine the autophagic activity. Morris water maze and object location test were employed to evaluate the memory and learning after antagomirs treatments in AD mice and the Aß in the brain tissues were determined. Results: MiR-331-3p and miR-9-5p are down-regulated in early-stage of AD mice, whereas up-regulated in late-stage of AD mice. We demonstrated that miR-331-3p and miR-9-5p target autophagy receptors Sequestosome 1 (Sqstm1) and Optineurin (Optn), respectively. Overexpression of miR-331-3p and miR-9-5p in SH-SY5Y cell line impaired autophagic activity and promoted amyloid plaques formation. Moreover, AD mice had enhanced Aß clearance, improved cognition and mobility when treated with miR-331-3p and miR-9-5p antagomirs at late-stage. Conclusion: Our study suggests that using miR-331-3p and miR-9-5p, along with autophagic activity and amyloid plaques may distinguish early versus late stage of AD for more accurate and timely diagnosis. Additionally, we further provide a possible new therapeutic strategy for AD patients by inhibiting miR-331-3p and miR-9-5p and enhancing autophagy.


Alzheimer Disease/prevention & control , Autophagy , Disease Models, Animal , Gene Expression Regulation , MicroRNAs/antagonists & inhibitors , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Humans , Male , Mice , Mice, Transgenic , MicroRNAs/genetics , Neurons/metabolism , Neurons/pathology
12.
Autophagy ; 17(10): 2766-2782, 2021 10.
Article En | MEDLINE | ID: mdl-33143524

Senile osteoporosis (OP) is often concomitant with decreased autophagic activity. OPTN (optineurin), a macroautophagy/autophagy (hereinafter referred to as autophagy) receptor, is found to play a pivotal role in selective autophagy, coupling autophagy with bone metabolism. However, its role in osteogenesis is still mysterious. Herein, we identified Optn as a critical molecule of cell fate decision for bone marrow mesenchymal stem cells (MSCs), whose expression decreased in aged mice. Aged mice revealed osteoporotic bone loss, elevated senescence of MSCs, decreased osteogenesis, and enhanced adipogenesis, as well as optn-/ - mice. Importantly, restoring Optn by transplanting wild-type MSCs to optn-/ - mice or infecting optn-/ - mice with Optn-containing lentivirus rescued bone loss. The introduction of a loss-of-function mutant of OptnK193R failed to reestablish a bone-fat balance. We further identified FABP3 (fatty acid binding protein 3, muscle and heart) as a novel selective autophagy substrate of OPTN. FABP3 promoted adipogenesis and inhibited osteogenesis of MSCs. Knockdown of FABP3 alleviated bone loss in optn-/ - mice and aged mice. Our study revealed that reduced OPTN expression during aging might lead to OP due to a lack of FABP3 degradation via selective autophagy. FABP3 accumulation impaired osteogenesis of MSCs, leading to the occurrence of OP. Thus, reactivating OPTN or inhibiting FABP3 would open a new avenue to treat senile OP.Abbreviations: ADIPOQ: adiponectin, C1Q and collagen domain containing; ALPL: alkaline phosphatase, liver/bone/kidney; BGLAP/OC/osteocalcin: bone gamma carboxyglutamate protein; BFR/BS: bone formation rate/bone surface; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A/p21: cyclin-dependent kinase inhibitor 1A; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CDKN2B/p15: cyclin dependent kinase inhibitor 2B; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; COL1A1: collagen, type I, alpha 1; Ct. BV/TV: cortical bone volume fraction; Ct. Th: cortical thickness; Es. Pm: endocortical perimeter; FABP4/Ap2: fatty acid binding protein 4, adipocyte; H2AX: H2A.X variant histone; HE: hematoxylin and eosin; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MAR: mineral apposition rate; MSCs: bone marrow mesenchymal stem cells; NBR1: NBR1, autophagy cargo receptor; OP: osteoporosis; OPTN: optineurin; PDB: Paget disease of bone; PPARG: peroxisome proliferator activated receptor gamma; Ps. Pm: periosteal perimeter; qRT-PCR: quantitative real-time PCR; γH2AX: Phosphorylation of the Serine residue of H2AX; ROS: reactive oxygen species; RUNX2: runt related transcription factor 2; SA-GLB1: senescence-associated (SA)-GLB1 (galactosidase, beta 1); SP7/Osx/Osterix: Sp7 transcription factor 7; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; Tb. BV/TV: trabecular bone volume fraction; Tb. N: trabecular number; Tb. Sp: trabecular separation; Tb. Th: trabecular thickness; µCT: micro computed tomography.


Aging , Autophagy , Cell Cycle Proteins , Fatty Acid Binding Protein 3 , Membrane Transport Proteins , Mesenchymal Stem Cells , Adipogenesis , Animals , Cell Cycle Proteins/metabolism , Cell Differentiation , Fatty Acid Binding Protein 3/metabolism , Membrane Transport Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Osteogenesis , Osteoporosis , X-Ray Microtomography
13.
Front Oncol ; 10: 586580, 2020.
Article En | MEDLINE | ID: mdl-33363016

Osteosarcoma is a malignant primary bone tumor commonly occurring in children and adolescents. The treatment of local osteosarcoma is mainly based on surgical resection and chemotherapy, whereas the improvement of overall survival remains stagnant, especially in recurrent or metastatic cases. Tumor microenvironment (TME) is closely related to the occurrence and development of tumors, and macrophages are among the most abundant immune cells in the TME. Due to their vital roles in tumor progression, macrophages have gained increasing attention as the new target of tumor immunotherapy. In this review, we present a brief overview of macrophages in the TME and highlight the clinical significance of macrophages and their roles in the initiation and progression of osteosarcoma. Finally, we summarize the therapeutic approaches targeting macrophage, which represent a promising strategy in osteosarcoma therapies.

14.
Dis Model Mech ; 13(11)2020 12 01.
Article En | MEDLINE | ID: mdl-33033107

Improving revascularization is one of the major measures in fracture treatment. Moderate local inflammation triggers angiogenesis, whereas systemic inflammation hampers angiogenesis. Previous studies showed that Akkermansia muciniphila, a gut probiotic, ameliorates systemic inflammation by tightening the intestinal barrier. In this study, fractured mice intragastrically administrated with A. muciniphila were found to display better fracture healing than mice treated with vehicle. Notably, more preosteclasts positive for platelet-derived growth factor-BB (PDGF-BB) were induced by A. muciniphila at 2 weeks post fracture, coinciding with increased formation of type H vessels, a specific vessel subtype that couples angiogenesis and osteogenesis, and can be stimulated by PDGF-BB. Moreover, A. muciniphila treatment significantly reduced gut permeability and inflammation at the early stage. Dextran sulfate sodium (DSS) was used to disrupt the gut barrier to determine its role in fracture healing and whether A. muciniphila still can stimulate bone fracture healing. As expected, A. muciniphila evidently improved gut barrier, reduced inflammation and restored the impaired bone healing and angiogenesis in DSS-treated mice. Our results suggest that A. muciniphila reduces intestinal permeability and alleviates inflammation, which probably induces more PDGF-BB+ preosteoclasts and type H vessel formation in callus, thereby promoting fracture healing. This study provides the evidence for the involvement of type H vessels in fracture healing and suggests the potential of A. muciniphila as a promising strategy for bone healing.This article has an associated First Person interview with the first author of the paper.


Femoral Fractures/microbiology , Femoral Fractures/pathology , Fracture Healing , Gastrointestinal Tract/microbiology , Inflammation/microbiology , Neovascularization, Physiologic , Akkermansia/physiology , Animals , Bony Callus/blood supply , Dextran Sulfate , Female , Fracture Healing/drug effects , Gastrointestinal Tract/drug effects , Mice , Neovascularization, Physiologic/drug effects , Osteoclasts/drug effects , Osteoclasts/pathology , Osteogenesis/drug effects , Permeability , Probiotics/pharmacology
15.
Sci Adv ; 6(43)2020 10.
Article En | MEDLINE | ID: mdl-33097529

Poor wound healing after diabetes or extensive burn remains a challenging problem. Recently, we presented a physical approach to fabricate ultrasmall silver particles from Ångstrom scale to nanoscale and determined the antitumor efficacy of Ångstrom-scale silver particles (AgÅPs) in the smallest size range. Here we used the medium-sized AgÅPs (65.9 ± 31.6 Å) to prepare carbomer gel incorporated with these larger AgÅPs (L-AgÅPs-gel) and demonstrated the potent broad-spectrum antibacterial activity of L-AgÅPs-gel without obvious toxicity on wound healing-related cells. Induction of reactive oxygen species contributed to L-AgÅPs-gel-induced bacterial death. Topical application of L-AgÅPs-gel to mouse skin triggered much stronger effects than the commercial silver nanoparticles (AgNPs)-gel to prevent bacterial colonization, reduce inflammation, and accelerate diabetic and burn wound healing. L-AgÅPs were distributed locally in skin without inducing systemic toxicities. This study suggests that L-AgÅPs-gel represents an effective and safe antibacterial and anti-inflammatory material for wound therapy.


Burns , Metal Nanoparticles , Acrylic Resins , Animals , Anti-Bacterial Agents/pharmacology , Burns/drug therapy , Inflammation/drug therapy , Mice , Silver/pharmacology , Wound Healing
16.
Theranostics ; 10(17): 7710-7729, 2020.
Article En | MEDLINE | ID: mdl-32685015

Osteosarcoma is a common malignant bone cancer easily to metastasize. Much safer and more efficient strategies are still needed to suppress osteosarcoma growth and lung metastasis. We recently presented a pure physical method to fabricate Ångstrom-scale silver particles (AgÅPs) and determined the anti-tumor efficacy of fructose-coated AgÅPs (F-AgÅPs) against lung and pancreatic cancer. Our study utilized an optimized method to obtain smaller F-AgÅPs and aimed to assess whether F-AgÅPs can be used as an efficient and safe agent for osteosarcoma therapy. We also investigated whether the induction of apoptosis by altering glucose metabolic phenotype contributes to the F-AgÅPs-induced anti-osteosarcoma effects. Methods: A modified method was developed to prepare smaller F-AgÅPs. The anti-tumor, anti-metastatic and pro-survival efficacy of F-AgÅPs and their toxicities on healthy tissues were compared with that of cisplatin (a first-line chemotherapeutic drug for osteosarcoma therapy) in subcutaneous or orthotopic osteosarcoma-bearing nude mice. The pharmacokinetics, biodistribution and excretion of F-AgÅPs were evaluated by testing the levels of silver in serum, tissues, urine and feces of mice. A series of assays in vitro were conducted to assess whether the induction of apoptosis mediates the killing effects of F-AgÅPs on osteosarcoma cells and whether the alteration of glucose metabolic phenotype contributes to F-AgÅPs-induced apoptosis. Results: The newly obtained F-AgÅPs (9.38 ± 4.11 nm) had good stability in different biological media or aqueous solutions and were more effective than cisplatin in inhibiting tumor growth, improving survival, attenuating osteolysis and preventing lung metastasis in osteosarcoma-bearing nude mice after intravenous injection, but were well tolerated in normal tissues. One week after injection, about 68% of F-AgÅPs were excreted through feces. F-AgÅPs induced reactive oxygen species (ROS)-dependent apoptosis of osteosarcoma cells but not normal cells, owing to their ability to selectively shift glucose metabolism of osteosarcoma cells from glycolysis to mitochondrial oxidation by inhibiting pyruvate dehydrogenase kinase (PDK). Conclusion: Our study suggests the promising prospect of F-AgÅPs as a powerful selective anticancer agent for osteosarcoma therapy.


Bone Neoplasms/drug therapy , Lung Neoplasms/drug therapy , Metal Nanoparticles/administration & dosage , Osteosarcoma/drug therapy , Silver/administration & dosage , Adolescent , Animals , Apoptosis/drug effects , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/administration & dosage , Female , Fructose/chemistry , Humans , Infant , Infant, Newborn , Injections, Intravenous , Lung Neoplasms/secondary , Male , Metal Nanoparticles/chemistry , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Osteosarcoma/secondary , Oxidation-Reduction/drug effects , Primary Cell Culture , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Reactive Oxygen Species/metabolism , Renal Elimination , Signal Transduction/drug effects , Silver/pharmacokinetics , Silver/urine , Tissue Distribution , Warburg Effect, Oncologic/drug effects , Xenograft Model Antitumor Assays , Young Adult
17.
J Acoust Soc Am ; 147(6): 3917, 2020 Jun.
Article En | MEDLINE | ID: mdl-32611149

The finite size of a sound-absorbing material may lead to inaccurate results when measuring the acoustical properties of the material using the free-field measurement methods. In this study, a method of estimating the acoustical properties of locally reactive finite materials is proposed by combining a sound field model established by the boundary element method with an iteration algorithm. The proposed method takes the finiteness of the material into account, meaning that the size effect is removed and accurate results can be obtained. Numerical simulations and experiments of two kinds of materials, including a rigid floor and a porous material, are carried out to verify the validity of the proposed method. Results demonstrate that the proposed method is effective in estimating the acoustical properties of these two kinds of materials. Besides, a detailed analysis of the influences of the sample size, the source location, and the receiving point position is done in the simulations.

18.
Theranostics ; 10(8): 3779-3792, 2020.
Article En | MEDLINE | ID: mdl-32206122

Healing of the chronic diabetic ulceration and large burns remains a clinical challenge. Therapeutic fasting has been shown to improve health. Our study tested whether fasting facilitates diabetic and burn wound healing and explored the underlying mechanism. Methods: The effects of fasting on diabetic and burn wound healing were evaluated by analyzing the rates of wound closure, re-epithelialization, scar formation, collagen deposition, skin cell proliferation and neovascularization using histological analyses and immunostaining. In vitro functional assays were conducted to assess fasting and refeeding on the angiogenic activities of endothelial cells. Transcriptome sequencing was employed to identify the differentially expressed genes in endothelial cells after fasting treatment and the role of the candidate genes in the fasting-induced promotion of angiogenesis was demonstrated. Results: Two times of 24-h fasting in a week after but especially before wound injury efficiently induced faster wound closure, better epidermal and dermal regeneration, less scar formation and higher level of angiogenesis in mice with diabetic or burn wounds. In vitro, fasting alone by serum deprivation did not increase, but rather reduced the abilities of endothelial cell to proliferate, migrate and form vessel-like tubes. However, subsequent refeeding did not merely rescue, but further augmented the angiogenic activities of endothelial cells. Transcriptome sequencing revealed that fasting itself, but not the following refeeding, induced a prominent upregulation of a variety of pro-angiogenic genes, including SMOC1 (SPARC related modular calcium binding 1) and SCG2 (secretogranin II). Immunofluorescent staining confirmed the increase of SMOC1 and SCG2 expression in both diabetic and burn wounds after fasting treatment. When the expression of SMOC1 or SCG2 was down-regulated, the fasting/refeeding-induced pro-angiogenic effects were markedly attenuated. Conclusion: This study suggests that fasting combined with refeeding, but not fasting solely, enhance endothelial angiogenesis through the activation of SMOC1 and SCG2, thus facilitating neovascularization and rapid wound healing.


Diabetes Mellitus, Experimental/diet therapy , Fasting , Neovascularization, Physiologic , Osteonectin/metabolism , Re-Epithelialization , Secretogranin II/metabolism , Animals , Burns/therapy , Cell Line , Cell Proliferation , Cicatrix/metabolism , Endothelial Cells , Humans , Male , Mice , Mice, Inbred C57BL , Skin/metabolism , Skin/pathology
19.
Zhongguo Gu Shang ; 32(12): 1144-1147, 2019 Dec 25.
Article Zh | MEDLINE | ID: mdl-31870075

OBJECTIVE: To explore the clinical effect of Qufu Shengji ointment(QFSJO) in promoting the wound healing after trauma. METHODS: From January 2014 to June 2018, 60 patients with soft tissue injury, skin defect and wound infection caused by violent trauma were admitted, including 32 males and 28 females, aged from 18 to 65 years, with an average age of 41.3 years. Among them, 30 patients were treated with QFSJO (QFSJO group) and 30 patients were treated with normal saline iodophor (control group). The reduction rate of wound area, the days of decayed flesh, the time of new epithelium and the recovery rate of 28 days after dressing change were compared between the two groups. RESULTS: In the QFSJO group, after using large dose of QFSJO, the pus of the wound increased, the granulation grew, and the new epithelium appeared on the edge of the wound, showing a rapid healing phenomenon. The wound healing rate of QFSJO group was higher than that of the control group at all time points, and the time of decaying flesh and new epithelium appeared in QFSJO group was earlier than that of the control group. The recovery rate of QFSJO group was significantly higher than that of the control group(P<0.05). All the patients were followed up, and the duration ranged form 6 to 12 months, with an average of 9.4 months. The exposed areas of bone and teadon were covered well. The vital signs of the two groups were stable and no adverse reactions occurred. CONCLUSIONS: QFSJO can promote the growth of granulation tissue, promote the production of new skin, and accelerate the healing of infectious wound after trauma.


Drugs, Chinese Herbal , Wound Infection , Adolescent , Adult , Aged , Female , Granulation Tissue , Humans , Male , Middle Aged , Wound Healing , Wound Infection/drug therapy , Young Adult
20.
Nanoscale ; 11(43): 20884-20892, 2019 Nov 21.
Article En | MEDLINE | ID: mdl-31660556

In elderly people particularly in postmenopausal women, inadequate bone formation by osteoblasts originating from bone marrow mesenchymal stem cells (BMSCs) for compensation of bone resorption by osteoclasts is a major reason for osteoporosis. Enhancing osteoblastic differentiation of BMSCs is a feasible therapeutic strategy for osteoporosis. Here, bone marrow stromal cell (ST)-derived exosomes (STExos) are found to remarkably enhance osteoblastic differentiation of BMSCs in vitro. However, intravenous injection of STExos is inefficient in ameliorating osteoporotic phenotypes in an ovariectomy (OVX)-induced postmenopausal osteoporosis mouse model, which may be because STExos are predominantly accumulated in the liver and lungs, but not in bone. Hereby, the STExo surface is conjugated with a BMSC-specific aptamer, which delivers STExos into BMSCs within bone marrow. Intravenous injection of the STExo-Aptamer complex enhances bone mass in OVX mice and accelerates bone healing in a femur fracture mouse model. These results demonstrate the efficiency of BMSC-specific aptamer-functionalized STExos in targeting bone to promote bone regeneration, providing a novel promising approach for the treatment of osteoporosis and fracture.


Aptamers, Nucleotide/chemistry , Bone Regeneration , Exosomes/metabolism , Animals , Aptamers, Nucleotide/metabolism , Bone Density , Bone Marrow Cells/cytology , Cell Differentiation , Disease Models, Animal , Exosomes/genetics , Exosomes/transplantation , Femur/diagnostic imaging , Flow Cytometry , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , Osteoporosis/therapy , Tissue Distribution , X-Ray Microtomography
...